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Abstract

Aim of the paper is the study of the cyclic behavior of reinforced concrete beams taking into account the com-

pression and tensile softening in the concrete material, the Baushinger effect in the steel and an adequate bond-slip law

for the concrete–steel interface. Nonlinear material models are developed on the basis of damage mechanics and

plasticity. In particular, an elastoplastic-damage model is developed for the concrete material introducing two damage

variables, one in tension and one in compression. A plasticity model with nonlinear hardening is adopted for the

reinforcing steel and a bond stress–slip law, suitable for cyclic behavior, is introduced for the concrete–steel interface.

The governing equations are derived and a numerical procedure based on the arc-length method, within an implicit

Euler algorithm for the time integration, is developed.

Some numerical examples are carried out in order to analyze the axial and bending behavior of reinforced concrete

beams under monotonic and cyclic loading. A comparison with experimental results available in literature is performed

in order to validate the proposed model.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

One-dimensional cementitious structural elements such as beams and arches are widely used in civil

engineering constructions. Classical textbooks, e.g. (Park and Paulay, 1975), present deep studies on the

behavior and modeling of reinforced concrete beams; thus, detailed descriptions of structural design of

concrete beams reinforced by classical steel bars are given.

Although many studies have been already developed in the topic of modeling of the mechanical behavior

of reinforced concrete constructions, the research in this field is still very active due to the complexity

arising from the composite nature of this material. Structural reinforced concrete, in fact, presents a
nonlinear behavior governed by different phenomena related to the nonlinear constitutive laws of the
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materials, and to the bond behavior between them. Even if simplified methodology can be adopted, par-

ticularly for strength definition, an accurate prediction of cracking and deflections of reinforced concrete

structures under working loads, and the assessment of the safety of structures against failure, cannot neglect

the analysis of tension stiffening, concrete softening, slip at the steel-concrete interface and crushing.
Furthermore the presence of cyclic loading, typical of seismic actions, introduces other problems related to

stiffness degradation in concrete, Bauschinger effect in reinforcing steel, and bond degradation between

concrete and reinforcement.

The behavior of reinforced concrete depends on the combined action of the concrete and its embedded

reinforcement. This composite action is produced by the bond stress at the interface of the two materials.

The crucial point of the study of the mechanical behavior of cementitious structures is the definition of

proper constitutive laws and of a suitable model, able to reproduce the structural response of reinforced

concrete elements. Cementitious materials are characterized by a softening response with different strength
in compression and in tension. In particular, experimental results show that these materials present brittle

behavior in tension and inelastic deformations accompanied by damage effects in compression.

On the basis of experimental evidences, different authors have proposed simplified stress–strain rela-

tionships for concrete in compression, also taking account of the confinement effect produced by the

stirrups. Starting from one of the first models proposed by Chan (1955), which described the nonlinear

behavior of compressed concrete by a trilinear curve, many authors improved the modeling of the concrete

behavior, considering nonlinear softening branches (Kent and Park, 1971; Sargin et al., 1971).

Furthermore, the concrete presents softening behavior both in compression and tension, giving rise to
localization effects in reinforced concrete structures. The compressive damage zone (CDZ) model was

developed by Markeset (1993) to study the failure of concrete under compression, taking account of the

presence of a localized damage near a crack.

The definition of the tensile behavior of concrete and, in particular, of the so-called tensile softening

behavior is of paramount importance, as this last aspect controls the transition modality from the

undamaged stage to the cracked one. In fact, the tensile brittle behavior of the concrete gives rise to

cracking phenomena in the structure.

The mechanical behavior of cementitious materials have been modeled using concepts of the fracture
mechanics, or of the continuum damage mechanics neglecting or considering the plasticity effects. The

fictitious crack model (FCM) was developed by Hillerborg (1983) to characterize the fracture of concrete in

tension. The model is based on the principle that the deformation, in the post-peak range, is localized in a

damage zone (fracture process zone).

In the framework of continuum damage mechanics, different models, which account not only for the

damage effects but also for the inelastic, i.e. plastic, deformations have been proposed in literature. Among

the models which take into account both the damage and the plastic behavior, Abu-Lebdeh and Voyiadjis

(1993) formulated a plastic-damage model for concrete under cyclic loading, adopting a bounding surface
concept. Luccioni et al. (1996) proposed a thermodynamically consistent plastic and damage model, based

on the classical plasticity theory and isotropic damage theory. Borino et al. (1996) developed a thermo-

dynamically consistent elastoplastic-damage model, which considers the coupling between the plasticity and

damage internal variables. Carol and Ba�zant (1997) considered the damage and plasticity effects into the

framework of the microplane theory. Meschke et al. (1998) proposed a model for plain concrete based on

the multisurface elastoplastic-damage theory. In that paper anisotropic stiffness degradation and inelastic

deformations are taken into account. de Borst et al. (1999) developed constitutive plastic-damage models

combining gradient plasticity with scalar damage and gradient damage with isotropic plasticity. Addessi
et al. (2001) presented a nonlocal elastoplastic-damage model for cementitious materials, considering the

damage evolution in compression depending on the total deformation.

The analysis of simple elements, therefore, cannot neglect the softening response in tension and in

compression of the concrete due to the damage and inelastic deformations occurring in the material.
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Between two subsequent cracks, in fact, tensile stresses are transmitted from the steel to the concrete by

means of bond actions; stress and strain redistributions occur along the structural elements and the con-

crete contributes to support tensile strength and to increase the stiffness of the element, giving rise to the so-

called tension stiffening effects. In these zones the strain in the reinforcement is reduced depending on the
spacing of the cracks and the bond characteristics of the rebar.

The full compatibility between concrete and reinforcement strains can be assumed only for low strain

levels. When the load level is increased, particularly in the surrounding of the cracks, high slips develop,

causing relative displacements between the concrete and the reinforcement steel.

The fundamental role of the interaction between reinforcing steel and surrounding concrete through

bond-slip is particularly remarkable in the cyclic behavior of reinforced concrete structures, when bond

deterioration can occur due to the damage caused by the load reversals. The definition of a suitable bond-

slip law is a wide discussed problem, and even if a great number of works deals with this topic, a finite
assessment is still not reached (CEB-FIP Bulletin, 2000).

The first studies date back to sixties. Rehm (1961) showed the existence of a slip between the steel rebar

and concrete and the related bond actions. Ngo and Scordelis (1967) developed a bond-slip model in the

framework of a finite element analysis by means of bond link elements introduced between concrete and

steel. Starting from these studies, on the basis of experimental and numerical results, different relationships

between bond stress and slip have been proposed (Ciampi et al., 1981; Harajli et al., 1995; Gambarova and

Rosati, 1996; Bigaj, 1999). In particular, the steel–concrete interface model reported in CEB-FIP Model

Code (1990) is based on the theory developed by Eligehausen et al. (1983).
The first analytical model for reversed cyclic bond behavior was proposed by Morita and Kaku (1973).

The model, considered not sufficiently accurate for several load cycles and for large slip values, was im-

proved in the 1980s by Tassios and Yannopoulos (1981) and Filippou et al. (1983). A more refined model

was proposed by Bal�azs (1991), defining a reversed cyclic envelop with reductions of the bond strength.

Experimental analyses to establish the relationship between bond stress, steel stress and slip were carried

out by Kankam (1997). The variation of the steel strain along the length of embedded bars, anchored at the

midpoint, was directly measured by the authors by means of tests conducted on double pullout specimens.

The obtained results, related to elastic behavior of the steel reinforcement, provide the basis for the cal-
culation of bond stress variation and local slip along the embedded length and for the definition of rela-

tionships between bond stress, steel stress and slip. Numerical solutions of the bond-slip problem, related

also to cyclic loads, were proposed by Ayoub and Filippou (1999).

The evaluation of the local behavior of a reinforced concrete element, taking account of the above

described phenomena, is a difficult task and it requires accurate modeling of the materials. The definition of

a moment–mean curvature relationship, that simulates the behavior of the whole cracked element, was

proposed by Grimaldi and Rinaldi (2000) in the case of monotonic loads and by Kwak and Kim (2001) in

case of cyclic loads.
Numerical solutions have been proposed by different authors. A fiber beam element accounted for the

bond-slip was formulated by Monti and Spacone (2000), cyclic behavior of reinforced concrete beam-

column elements were studied by finite elements analyses by Kwan and Billington (2001).

Aim of the present paper is the definition and evaluation of a suitable approach for predicting the cyclic

behavior of reinforced concrete structural elements. Nonlinear material models are defined on the basis of

damage mechanics and plasticity. Compression and tension strain-softening, Bauschinger effect, and ade-

quate bond-slip law are accounted for.

In particular, a one-dimensional model for a beam element of reinforced concrete is proposed. A
thermodynamically consistent elastoplastic-damage model is developed for the concrete material intro-

ducing two damage variables, one in tension and one in compression, accounting for the crack closure

unilateral phenomenon. The damage evolution is governed by the elastic strain as the experimental evi-

dences show. A regularized technique based on the fracture energy is adopted to overcome the numerical



3296 S. Marfia et al. / International Journal of Solids and Structures 41 (2004) 3293–3316
problems due to the strain and damage localization. A plasticity model with nonlinear isotropic and

kinematic hardening, able to reproduce the Baushinger effect, is adopted for the steel of the bars. Fur-

thermore, a plastic bond stress–slip law is introduced for the steel–concrete interfaces. Some numerical

examples are developed in order to analyze the axial and bending behavior of reinforced concrete elements
under monotonic and cyclic loading and a comparison with experimental results is performed in order to

validate the presented material model and numerical procedure.

The paper is organized as follows; initially the elastoplastic-damage model for concrete, the plasticity

model for the steel of the bars and the bond stress–slip law for the steel–concrete interface are described.

Then, the beam element equations are deduced. The numerical procedure is briefly presented and finally,

some numerical applications on reinforced concrete beam elements, subjected to monotonic and cyclic

loads, are reported.
2. Reinforced concrete beam

The problem of reinforced concrete beam subjected to axial force and bending moment is considered. In

particular, since the axial force and the bending moment are assumed to be constant along the beam span,
regularly spaced cracks, at a distance 2k, can develop because of the limited tensile strength of the concrete;

thus, a reference repetitive element, characterized by a length equal to 2k, can be determined, as shown in

Fig. 1. Initially, the crack distance 2k can be approximately evaluated according to the CEB-FIP Model

Code (1990) as function of geometrical and mechanical properties of the beam cross-section. The model

and the procedure developed in the next section are able to give a rational evaluation of the crack length 2k.
The proposed model can be easily extended to the study of reinforced concrete beams also when the axial

force and the bending moment are not constant along the span.

Because of the presence of cracks in the beam, elongation e and curvature v gradients occur inside the
repetitive element. Indeed, the study of the beam response can be approached averaging these character-

istics along the element.

The structural behavior is determined considering suitable stress–strain relationships for the concrete

and for the steel along the beam axis. In particular, the concrete behavior is deduced considering an energy

regularization technique, while the response of the steel bar embedded in a concrete cover is determined

considering the local effects occurring in the cracked element.

The effect of stirrups is taken into account setting in a suitable way the material parameters governing

the constitutive relationship of the concrete. In fact, the presence of transversal reinforcements affects the
ductility, i.e. the plastic behavior, and also the compressive strength of the concrete.

Due to the symmetry of the problem, only one half of the repetitive element, characterized by a length k,
is considered in the following; a Cartesian coordinate system ðO; x; y; zÞ with origin in the symmetry section

and z defining the beam axis is introduced, as illustrated in Fig. 2. In the following the apex f 0 indicates the

derivative with respect to the z-coordinate, i.e. f 0 ¼ df =dz, while the superimposed dot _f the derivative with

respect to the evolution parameter e.g. the time, _f ¼ df =dt.
Fig. 1. Reinforced concrete beam subjected to axial force and bending moment: regularly spaced cracks and repetitive element.
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2.1. Concrete model

The concrete presents a strongly nonlinear response. In fact, the tensile behavior is characterized by the

development and opening of microcracks, whose coalescence leads to the formation of macrocracks and,

hence, of fractures. Moreover, the concrete presents a damage plastic response in compression, due to the

development of microcrushes and to the dislocation of the aggregates constituting the concrete. The first

phenomenon is responsible for the damage while the second is related to inelastic deformations, which can
be reproduced by a plasticity model. A very special feature of the concrete material is the closure of the

developed microcracks passing from tensile to compressive loading; this special behavior, often reported as

the unilateral effect in the damaged concrete, can be modeled introducing two different damage parameters:

one in tension and one in compression. Since the present work deals with the axial and bending behavior of

reinforced concrete beams, a one-dimensional constitutive relation is addressed. The free energy is assumed

to be:
w ¼ g
1

2
ð1

�
� Dþ

c ÞEcðec � epc Þ
2 þ gþðnþÞ

�
þ ð1� gÞ 1

2
ð1

�
� D�

c ÞEcðec � epc Þ
2 þ g�ðn�Þ þ kðbcÞ

�
ð1Þ
where

• ec is the total strain in concrete;

• epc is the concrete plastic strain, so that ec � epc ¼ eec represents the elastic strain;

• g is the stepwise function of the elastic strain eec, such that g ¼ 1 if eec P 0 and g ¼ 0 if eec < 0;

• the superscript þ corresponds to the case g ¼ 1, i.e. eec P 0, and the superscript � corresponds to the case

g ¼ 0, i.e. eec < 0;

• Ec is the Young modulus of the concrete material;

• Dþ
c and D�

c are the concrete damage parameters in tension and in compression, respectively, satisfying

the classical inequalities 06D�
c 6 1, with D�

c ¼ 0 for the virgin material and D�
c ¼ 1 for the completely

damaged material; moreover, it is assumed Dþ
c PD�

c , i.e. the damage in tension does not induce damage

in compression, while the damage in compression leads to a material degradation even in tension, as sug-

gested in Ramtani et al. (1992) and Lee and Fenves (1998) where experimental results are reported;
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• nþ and n� are the dimensionless internal parameters governing the concrete damage softening in tension

and in compression, respectively;

• bc is the dimensionless internal parameter governing the strain hardening occurring in compression.

The functions g�ðn�Þ and kðbcÞ are defined as:
g�ðn�Þ ¼ 1

2
Ec

ðe�0 Þ
2

ð1þ a�n� � n�Þða� � 1Þ
ð2Þ

kðbcÞ ¼
1

2
Kcb

2
c ð3Þ
where e�0 represents the starting damage threshold strain and a� ¼ e�0 =e
�
u is the threshold ratio, with e�u the

final damage threshold strain. The quantity Kc is the plastic hardening parameter. The threshold strains e�0
and e�u and the plastic hardening quantity Kc are material parameters. The state laws result:
rc ¼
ow
oec

¼ g½ð1� Dþ
c ÞEcðec � epc Þ� þ ð1� gÞ½ð1� D�

c ÞEcðec � epc Þ� ð4Þ

Y � ¼ � ow
oD�

c

¼ 1

2
Ecðec � epc Þ

2

1� ¼ � ow

on�
¼ 1

2
Ec

ðe�0 Þ
2

ð1þ a�n� � n�Þ2

t ¼ � ow
oepc

¼ rc

# ¼ � ow
obc

¼ �ð1� gÞKcbc
where rc is the stress, Y � is the damage energy release rate, 1� is the thermodynamical force associated to

n�, t is the thermodynamical forces associated to the plastic strain and # is the hardening plastic force. The

evolution equations of the internal state variables (D�
c ; n; e

p
c ; bc) are deduced introducing two damage yield

functions F þ and F �, one in tension and one in compression, and a plastic yield function F p
c . In particular,

regarding the damage evolutions, it results:
F �ðY �; 1�Þ ¼ Y � � 1� 6 0 _c� P 0 F � _c� ¼ 0 ð5Þ

_D�
c ¼ oF �

oY � _c� ¼ _c�

_n� ¼ � oF �

o1�
_c� ¼ _c�
so that _D�
c ¼ _n� ¼ _c�, i.e. the parameter n� coincides with the damage internal state variable D�

c . Taking
into account the state law equations (4), the limit condition (5) can be rewritten as:
0 ¼ Y � � 1� ¼ 1

2
EcðeecÞ

2 � 1

2
Ec

ðe�0 Þ
2

ð1þ a�D�
c � D�

c Þ
2

ð6Þ
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which leads to:
eec ¼
e�0

1þ a�D�
c � D�

c

ð7Þ
i.e.,
D�
c ¼ e�0 � eec

ða� � 1Þeec
¼ eu

e�0 � eec
ðe�0 � e�u Þeec

ð8Þ
Thus, it results D�
c ¼ 0 for eec ¼ e�0 and D�

c ¼ 1 for eec ¼ e�u ; moreover, substituting the deduced relation (8)

into the expression of the stress given by the first equation of the state laws (4), a stress–strain linear

softening is obtained when no plastic evolution is considered.

The evolution of the damage parameter _D�
c ¼ _n� ¼ _c� is deduced by the consistency equations. In fact, it

is:
0 ¼ _F �ðY �; 1�Þ ¼ oF �

oY �
_Y � þ F �

o1
_1� ¼ _Y � � _1� ¼ Ece

e
c _e

e
c þ Ec

ðe�0 Þ
2ða� � 1Þ

ð1þ a�n� � n�Þ3
_n�

with F � ¼ 0 and _1� > 0 ð9Þ
Taking into account the definitions of the thermodynamical force 1� and of the damage energy release rate

Y �, and recalling that n� ¼ D�
c , it results:
0 ¼ _eec þ
ða� � 1Þeec

ð1þ a�D�
c � D�

c Þ
_D�
c with F � ¼ 0 and _D�

c > 0 ð10Þ
Substituting expression (8) into Eq. (10), it applies:
_D�
c ¼ e�0

ð1� a�ÞðeecÞ
2
_eec with F � ¼ 0 and _D�

c > 0 ð11Þ
which gives the damage rate as function of the elastic strain rate. For what concerns the plasticity evolution,

it is assumed:
F p
c ðrc; #Þ ¼ � rc

ð1� D�
c Þ

þ #� fc 6 0 with _lc P 0 and F p
c _lc ¼ 0 ð12Þ

_epc ¼
oF p

c

orc

_lc ¼ � _lc

1� D�
c

_bc ¼
F p
c

o#
_lc ¼ _lc

ð13Þ
such that, it results:
_bc ¼ �ð1� D�
c Þ_epc ð14Þ
The quantity rc=ð1� D�
c Þ ¼ ~rc in Eq. (12) is the effective stress in compression, while fc is the effective

plastic yield stress of the concrete. The consistency condition for the plastic process leads to:
0 ¼ _F p
c ðrc; #Þ ¼

oF p
c

orc

_rc þ
oF p

c

o#
_# ¼ 1

1� D�
c

_rc þ _# ¼ 1

1� D�
c

ð1
h

� D�
c ÞEcð_ec � _epc Þ

i
� Kc

_bc

¼ Ecð_ec � _epc Þ þ Kcð1� D�
c Þ_epc ð15Þ
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Solving Eq. (15) with respect to _epc , the evolution equations of the plastic process result:
F

_epc ¼ H�
c _ec

_bc ¼ �ð1� D�
c ÞH�

c _ec
ð16Þ
where
H�
c ¼ Ec

Ec þ Kcð1� D�
c Þ

ð17Þ
Finally, the damage rate in tension and in compression can be computed in terms of the total strain rate as:
_D�
c ¼ e�0

ð1� a�ÞðeecÞ
2
ð_ec � _epc Þ ¼

e�0
ð1� a�ÞðeecÞ

2
ð1� H�

c Þ_ec ð18Þ
where Hþ
c ¼ 0. Note that the specialization of formula (18) in the tensile case leads to Eq. (11), as _eec ¼ _ec in

tension. The tangent constitutive modulus Et
c is obtained by differentiating the stress–strain relationship

(4)1:
Et
c ¼ ð1

�
� D�

c Þ �
e�0

ð1� a�Þeec

�
EcKcð1� D�

c Þ
Ec þ Kcð1� D�

c Þ
In Fig. 3 it is schematically reported the stress–strain response of the concrete model in compression and in

tension, emphasizing the behavior under loading–unloading cycles. Finally, all state and evolution equa-

tions of the concrete model are summarized in Table 1.

It can be noted that the strain and stress along any concrete string are assumed to be constant, i.e. they
do not depend on the z-coordinate. Indeed, denoting by wcðx; y; zÞ the horizontal displacement of a typical

point lying on the cross-section sited at a distance z form the symmetry section, it results:
wcðx; y; zÞ ¼ zecðx; yÞ ð19Þ

At the cracked section it applies:
wcðx; y; kÞ ¼ kecðx; yÞ ¼ kðedc ðx; yÞ þ eepc ðx; yÞÞ ð20Þ
where the elasto-plastic strain eepc , comprising both elastic and plastic strain, is introduced. The elasto-

plastic horizontal displacement wep at the typical cross-section is obtained as wepðx; yÞ ¼ zeepc ðx; yÞ. The
ig. 3. Stress–strain response of the concrete model in compression (a) and in tension (b), under loading–unloading cycles.



Table 1

State and evolution equations of the concrete model

rc ¼ g½ð1� Dþ
c ÞEcðec � epc Þ� þ ð1� gÞ½ð1� D�

c ÞEcðec � epc Þ�

F � ¼ Y � � 1� ¼ 1

2
EcðeecÞ

2 � 1

2
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ðe�0 Þ
2

ð1þ a�D�
c � D�

c Þ
2
6 0

_D�
c ¼ e�0

ð1þ a�ÞðeecÞ
2
ð_ec � _epc Þ with F � ¼ 0

F p
c ¼ � rc

ð1� D�
c Þ

� Kcbc � fc 6 0

_epc ¼
Ec

Ec þ Kcð1� D�
c Þ

_ec with F p
c ¼ 0

_bc ¼ �ð1� D�
c Þ

Ec

Ec þ Kcð1� D�
c Þ

_ec
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strain edc ¼ ec � eepc reflects the strain corresponding to stiffness degradation in consequence of damage, as

schematically shown in Fig. 3. The elasto-plastic strain is obtained as:
eepc ¼ ð1� D�
c Þec þ D�

c e
p
c ð21Þ
Indeed, the concrete damage is localized in a zone close to the fracture or crashing section, i.e. at z ¼ k. The
size ‘ of the damaged zone is a material parameter. Let G�

F be the specific fracture energy dissipated in the

damaged zone of length ‘ in tension and in compression. The slopes of the softening branches in tension

and in compression of the proposed constitutive model for the concrete, and in particular the parameters e�u
are properly set in order to have the same damage dissipation G�

F for the whole string of length 2k:
0:5Ece
�
0 e

�
u ¼ G�

F

2k
ð22Þ
in such a way, the constitutive law is able to reproduce the overall behavior of a string characterized by a

length 2k.
On the other hand, the size ‘ of the zone associated with damage effects can be considered small with

respect to k, i.e. ‘ � k, thus it can be assumed ‘ ¼ 0. In other words, it is assumed that the fracture or the

crash localize in a section.

2.2. Steel model

A plasticity model for the steel, based on the formulation developed by Yoshida et al. (2002), is pro-

posed. It considers nonlinear isotropic and kinematic hardening, and it is able to reproduce the Baushinger

effect.
The stress–strain relationship is:
rs ¼ Esðes � eps Þ ð23Þ
where es and eps are the total and the plastic axial strain of the steel bar, respectively, and Es is the steel

Young modulus. Denoting by w the displacement field of the bar, the axial strain is es ¼ w0. The plasticity

yield function, characterized by an isotropic and kinematic hardening, is:
F p
s ðrs; qs; dsÞ ¼ jrs � qsj � ðds þ fsÞ6 0 ð24Þ
where fs is the steel yield stress, qs is the so-called back stress, and ds is the isotropic hardening force.
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The plastic strain evolution is governed by the following equations:
F p
s ðrs; qs; dsÞ6 0 _ls 6 0 F p

s _ls ¼ 0 ð25Þ

_eps ¼
oF p

s

ors

_ls ¼ _lssignðrs � qsÞ

_ds ¼ ½msðdsat � dsÞ þ Ks� _ls

_qs ¼ Cs

as
ds þ rs

jrs

�
� qsj � qs

�
_eps

ð26Þ
with _ls, the plastic multiplier; bs, the effective plastic strain; Ks, ms and dsat, the isotropic hardening con-

stants; Cs and as, the kinematic hardening parameters. From the consistency condition the plastic multiplier
_ls is determined.

The parameters Cs and as are assumed to be function of the effective plastic strain bs as:
Cs ¼ Cfinal þ 1

�
þ Cstart � Cfinal

Cfinal

eð�bsCexpÞ
�

as ¼ afinal þ 1

�
þ astart � afinal

afinal
eð�bsaexpÞ

� ð27Þ
where Cstart, Cfinal, astart and afinal are the initial and final value of Cs and as, respectively and Cexp and aexp are
material constants. The values of the parameters Cs and as are updated using formula (27) during the

unloading phases, i.e. when rs � _rs < 0.

It is worth noting that also the proposed steel model can be set in the framework of thermodynamics

(Lemaitre and Chaboche, 1990), but this formulation is herein omitted, for brevity.

2.3. Steel–concrete interface

A very important role in the overall response of the reinforced beam is played by the bond-slip between

the concrete and the steel bar. For the typical steel bar positioned at a point of the cross-section with the

coordinates x, y, the slip is defined as:
sðx; y; zÞ ¼ wðx; y; zÞ � wepðx; y; zÞ ¼ wðx; y; zÞ � zeepc ðx; yÞ ð28Þ

It can be emphasized that the mechanical phenomena occurring at the steel–concrete interface are complex.
For low values of the stresses at the interface, the bond efficiency is ensured mostly by chemical adhesion;

this phase can be modeled by a linear elastic behavior. For higher values of the stresses the chemical

adhesion breaks down and microcraks originate. A rather sudden reduction of the bond stress, depending

on the confinement effect, occurs; a damage model could be adopted to simulate this mechanical behavior

(Soh et al., 1999). Increasing the slip values, the bond behavior tends to become dry-friction type, since the

concrete between the steel lugs is crushed; the dry-friction effect can be modeled by plasticity.

Indeed, the modeling of the steel–concrete interface behavior would require the use of both damage and

plasticity theories. In order to define a simple but effective model, only the plasticity effect is considered, as
it mainly affects the ultimate behavior of the bond-slip. In particular, the model proposed by Ciampi et al.

(1981), adopted by the CEB-FIP Model Code (1990) and by the EUROCODE 2 (1993), is herein framed in

the plasticity theory.

The interface constitutive tangential stress–slip relationship is written as:
s ¼ Ksðs� spÞ ð29Þ
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where sp represents the interface plastic slip, whose evolution is governed by the following equations:
_ls P 0 Fs 6 0 Fs _ls ¼ 0 ð30Þ
with Fs, the yield function and _ls, the plastic multiplier. The slip yield function is set as follows:

• when s; sP 0, it is assumed:
Fs

s1

_ls

_a

_sp

P

Fs

_ls

_b

_sp
¼ jsj � s1ðbÞ
�

þ s1ðbÞ � s3
s1

ða� s1Þ� � s1ðbÞ � s3
s3 � s2

ða� s3Þ�

a� s3
ða� s2Þþ � ðs1ðbÞ � s3Þ

ða� s3Þþ

a� s3

�

ð31Þ
with ð�Þþ and ð�Þ� the positive and negative part of a number and
ðbÞ ¼ s3 �
s1 � s3

s3
ðb� s3Þ�

¼ Ks signðsÞ
Ks þP

_s

¼ _ls

¼ _ls signðsÞ ¼
Ks

Ks þP
_s

¼ s1ðbÞ � s3
s1

ða� s1Þ�

a� s1
� s1ðbÞ � s3

s3 � s2

ða� s3Þ�

a� s3

ða� s2Þþ

a� s2

ð32Þ
• when s; s < 0, it is assumed:
¼ jsj � s3 ð33Þ
with
¼ signðsÞ_s

¼ _ls

¼ _ls signðsÞ ¼ _s

ð34Þ
In Eqs. (31)–(34) the quantities s1, s3, s1, s2, s3 and Ks are interface parameters. The piecewise linear re-

sponse of the interface model and the mechanical interpretation of the material parameters s1, s3, s1, s2 and
s3 are schematically reported in Fig. 4. Two possible loading histories are reported: path 1 represents a

monotonic slip history, while path 2 corresponds to a cyclic slip history.
Fig. 4. Schematic mechanical response of the concrete–steel interface: plastic slip versus tangential stress.
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3. RC beam equations

The concrete, the steel and the interface constitutive laws, developed in the previous section, are adopted

to study the softening behavior of reinforced concrete beams. In particular, beam cross-sections, involving
two steel reinforcements and presenting a symmetry axis y, are considered. Let y1 and y2 denote the

coordinates in the cross-section where the reinforcements are positioned. Note that the study can be ex-

tended to other geometries of the cross-section and, moreover, the presence of any other steel bar can be

considered. The kinematics of the beam is completely described by the elongation e and the bending

curvature v, such that the strain at a typical point of the beam is:
e ¼ eþ yv ð35Þ
By compatibility, it occurs e ¼ ec.
The axial force Nc and the bending momentMc in the concrete at the cracked cross-section, are evaluated

as:
Ncðe; vÞ ¼
Z
Ac

rcðe; vÞdA

Mcðe; vÞ ¼
Z
Ac

yrcðe; vÞdA
ð36Þ
where Ac is the cross-section area of the concrete beam.

The axial force Ns and the bending moment Ms in the steel reinforcements at the cracked cross-section

are:
Ns ¼ F1 þ F2
Ms ¼ y1F1 þ y2F2

ð37Þ
where Fi is the force due to the ith steel bar acting on the cross-section at z ¼ k.
The differential equilibrium equation of the ith steel bar, characterized by area Ai and circumference Si,

with i ¼ 1, 2, is:
Air
0
s þ Sis ¼ 0 ð38Þ
subjected to the boundary conditions:
wi ¼ 0 at z ¼ 0

Airs ¼ Fi at z ¼ k
ð39Þ
The differential equation (38), subjected to boundary condition (39), is discretized in finite elements.

Finally, the behavior of the cross-section softening beam is governed by the equilibrium equations:
Nc þ Ns � /Next ¼
Z
Ac

rcðe; vÞdAþ F1 þ F2 � /Next ¼ 0

Mc þMs � /Mext ¼
Z
Ac

yrcðe; vÞdAþ y1F1 þ y2F2 � /Mext ¼ 0

ð40Þ
where Next and Mext are the external axial force and bending moment, respectively, and / is the loading

multiplier, introduced with the aim of developing an arc-length procedure.

It can be emphasized that the beam elongation e and curvature v and the displacements of the two bars
are related by suitable kinematic compatibility equations, derived from the classical plane section

hypothesis of the Euler–Bernoulli beam theory.
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Furthermore, in order to verify the accuracy of the assumed value for the cracking distance 2k, the stress
in the concrete at the section z ¼ 0 is computed. The forces F 0

1 and F 0
2 acting in the steel bars at the un-

cracked section are evaluating using the equilibrium equations as:
F 0
i ¼ Fi �

Z k

0

Sisdz ð41Þ
with i ¼ 1,2. The axial force N 0
s and the bending moment M0

s in the steel at z ¼ 0 are:
N 0
s ¼ F 0

1 þ F 0
2 M0

s ¼ y1F 0
1 þ y2F 0

2 ð42Þ
As a consequence the axial force N 0
c and the bending moment M0

c in the concrete at z ¼ 0 are:
N 0
c ¼ /Next � N 0

s M0
c ¼ /Mext �M0

s ð43Þ
Once N 0
c and M0

c are computed, the stress in the concrete is determined applying the classical Navier

formula, assuming a linear elastic response for the concrete. If the maximum tensile stress is greater than

the tensile strength of the concrete, the section at z ¼ 0 is also damaged and the crack distance 2k must be

reduced.
The reinforced concrete beam response is governed by the nonlinear system of equations obtained

considering the equilibrium conditions of the bars and of the cross-section and the kinematic compatibility

equations. The nonlinear problem is solved developing a numerical procedure. The unknowns of the

problem, i.e. the nodal displacements of the bars, the global kinematic parameters e, v defining the average

beam deformation and steel forces F1, F2 due to the bar actions in the cross-section at z ¼ k, are determined

adopting a Newton–Raphson algorithm, taking into account the constraint equations provided by the arc-

length method.

The softening behavior of the material constituting the beam, in fact, can induce an overall response
characterized by steep softening and snap-back branches. Hence, it appears convenient to adopt an arc-

length method able to catch the overall beam response. In particular, the cylindrical as well as the linearized

arc-length methods (Crisfield, 1991) with local control are developed for the particular problem under

consideration. Special attention is addressed to the choice of the control parameters which represents a key

point of the arc-length method. The two strains êþc and ê�c , evaluated at y ¼ yþu and y ¼ y�u , are assumed as

control parameters. The coordinates yþu and y�u define the position of the axes in the cross-section where the

elastic strains computed at the time tn are equal to the tensile and compressive final damage threshold

strains, respectively, i.e. eec;nðyþu Þ ¼ eþu and eec;nðy�u Þ ¼ e�u .
If the coordinates yþu and y�u are not internal to the cross-section it is assumed yþu ¼ �h=2 and

y�u ¼ �h=2, where h is the dimension of the cross-section along the y-axis and the sign + or ) is selected in

dependence on the sign of the external load.

The time integration of evolutive equations of the concrete, of the steel and of the steel–concrete

interface in the interval ½tn; tnþ1� is performed adopting a backward-Euler scheme (Simo and Hughes, 1998).

In the following some details regarding the time integration of the damage–plastic evolutive equations

governing the concrete behavior are reported.

The discretized forms of the evolution equations of the plastic strain (16)1 and of the damage (18) are:
epc ¼ epc;n þ H�
c Dec

D�
c ¼ D�

c;n þ
e�0

ð1� a�Þðe� epc Þ2
ð1� H�

c ÞDec
ð44Þ
where H�
c is defined in Section 2.1. The solution of the coupled equations (44) is performed by means of a

return-mapping algorithm, i.e. a predictor–corrector procedure (Simo and Hughes, 1998).



3306 S. Marfia et al. / International Journal of Solids and Structures 41 (2004) 3293–3316
Depending on the trial values of limit functions F ptr

c and F �tr, computed assuming no plastic and damage

evolution, four different cases can occur.

Case 1: F ptr

c < 0 F �tr < 0. The damage and yield functions are satisfied so there is neither plastic flow nor
damage evolution. The elastic trial state is the solution of the damage plastic problem at this step.

Case 2: F ptr

c < 0 F �tr P 0. The damage limit function is not satisfied. In this case, only damage evolution

arises; in fact, in tension, there is never plastic evolution; moreover in compression, it can be noted

that the plastic yield function does not depend on the value of D�
c ; thus, updating the variable D�

c ,

the value of the plastic yield function does not change, i.e. F p
c ¼ F ptr

c < 0, and no plastic evolution

occurs. Finally, the solution of case 2 is computed solving Eq. (44)2 with epc ¼ epc;n, under the con-
straints D�

c PD�
c;n and 06D�

c 6 1.

Case 3: F ptr

c P 0 F �tr < 0. This case can occur only in compression. The plastic evolution is evaluated solv-
ing Eq. (44)1 with D�

c ¼ D�
c;n. Once epc is computed, a new value of the trial damage limit function

F �tr is determined. If F �tr < 0, then only plastic evolution occurs.

On the contrary, if F �tr P 0, also a damage evolution occurs and the evaluation of the plastic and

damage increments is performed solving case 4.

Case 4: F ptr

c P 0 F �tr P 0. Also this case can occur only in compression. The plastic strain and damage evo-

lutions are evaluated solving the coupled nonlinear evolutive Eq. (44) under the constraints

epc 6 epc;n, D
�
c PD�

c;n and 06D�
c 6 1. To this end, the Newton-Raphson algorithm is adopted.

The time integration of the nonlinear plastic evolutive equations governing the steel behavior is

performed using a Newton–Raphson algorithm, as the equations, reported in formulas (26), result

coupled.
4. Numerical studies

Numerical applications are developed to analyze the behavior of typical steel reinforced concrete beams.
The axial and bending behavior under monotonic and cyclic loading is investigated. Steel reinforced

concrete elements characterized by a rectangular cross-section and by different amounts of steel rein-

forcements are studied.
4.1. Axial and bending behavior

The following material data are adopted:

• Concrete:
Ec

eþu

Es

ast

Ks
¼ 30;000 MPa fc ¼ 15 MPa Kc ¼ 10;000 MPa eþ0 ¼ 0:00007 e�0 ¼ �0:00084

¼ 0:00025 e�u ¼ �0:002
• Steel:
¼ 210;000 MPa rs ¼ 440 MPa Ks ¼ 1850 MPa ms ¼ dsat ¼ 0:0 Cstart ¼ Cfinal ¼ 0:0

art ¼ afinal ¼ 0:0 MPa
• Steel–concrete interface:
¼ 250 N=mm3 s1 ¼ 10 MPa s2 ¼ 2:5 MPa s1 ¼ 0:6 mm s2 ¼ 2:0 mm s3 ¼ 3:5 mm
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It is worth noting that in the following applications only isotropic linear hardening is considered for the

steel, as pointed out by the previous material data.

The geometrical data are set as:
Fig.
k ¼ 200 mm b ¼ 300 mm h ¼ 600 mm y1 ¼ �270 mm y2 ¼ 270 mm
where b and h are the width and the height of the rectangular cross-section, respectively.

The material parameters for concrete are set on the basis of the following considerations:

• the tensile strength Eceþ0 ¼ 2:1 MPa and the fracture energy Gþ
F ¼ 0:1 N/mm are adopted in tension;

• the parameters governing the constitutive law in compression are set on the basis of the concrete beha-

vior proposed by Park and Paulay (1975) (see Fig. 5).

Two beam elements characterized by different reinforcements are investigated; the first element C1 is

reinforced by 2 bars £16 at the bottom and 2 bars £16 at the top; the second element, named C2, is

reinforced by 4 bars £16 at the bottom and 4 bars £16 at the top.
4.1.1. Axial behavior

The tensile mechanical behavior of steel reinforced elements is analyzed. First a monotonic load is

applied.

In Fig. 6 the axial force versus the average axial strain along the element is plotted for the two different

analyzed elements; in particular, the total axial force, the axial force in concrete and in the reinforcements
are represented. It can be pointed out that in both the analyses when the damage starts to propagate in

concrete, slip occurs at the steel–concrete interfaces and the mechanical response of the element is char-

acterized by a softening branch. When the section is completely damaged the overall mechanical response is

governed only by the reinforcement behavior. For the C1 element the softening branch is steeper than for

the C2 one, while the concrete response in the two analyses is exactly the same. Further analyses, not

reported here, have shown that increasing the amount of steel reinforcement the post-peak branch reduces

its slope and it tends to become flat.

In Figs. 7 and 8 the slip and the steel strain along the bars are plotted at several steps of the analysis,
respectively, for the C2 reinforced element. As soon as damage starts to propagate in concrete (e > 0:00007)
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slip occurs along the bars; then, when the section is completely damaged (e > 0:00025) and when plasticity
occurs in the bars (e > 0:0015), the slip at the interface and the strain in the bars become more significant

and they tend to concentrate in a narrow zone close to the cracked section. It can be pointed out that only a

narrow zone of the bars is interested by plastic strains, while the greater part of the reinforcements still

behaves elastically. This last phenomenon is of topical interest in concrete structures, as it can lead to brittle

failure due to the localization of steel strains near cracks. In this case the ultimate strain in the steel can be

achieved near the crack, when the related average value is still elastic, avoiding the expected and required

spread of plasticity along the rebars.

In Fig. 9 the axial response of the C2 element subjected to a cyclic load is plotted. In particular, tension
load, followed by compression load and by tension again are provided. In that figure, the total axial force,

the axial force in concrete and in the reinforcements are plotted versus the axial elongation. It can be

pointed out that:
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• at the beginning of the analysis, during the tensile loading, the overall mechanical response is character-

ized by a softening branch since damage starts to occur in concrete; in this phase the steel reinforcements

still behave elastically; it is worth noting that the Ns axial force, represented in Fig. 9, is related to the

rebars embedded in concrete, so it takes account of the bond stress distribution developed along the

interfaces;

• the residual axial strain for Next ¼ 0 is due to residual slip at the interfaces (see detail in Fig. 9);

• when a compressive load is applied, the initial stiffness of the element is recovered since the crack closure

occurs in concrete material;
• during the compressive load the overall mechanical response is influenced first by the plasticity and the

damage occurring in concrete and finally by the plasticity in the steel reinforcements;
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• during the reloading in tension the element stiffness depends on the accumulated tensile damage, in fact,

this branch is parallel to the unloading tensile branch of the first cycle; then, damage keeps on propa-

gating and when the cracked section is completely damaged the overall mechanical response is governed

only by the reinforcement behavior.

In all the developed analyses the accuracy of the assumed value for the cracking distance 2k has been

verified computing the stress in the concrete at the section z ¼ 0.
4.1.2. Bending behavior

The bending behavior of the C2 reinforced element is investigated under monotonic and cyclic loading.

In Fig. 10 the bending moment versus the average curvature along the element is plotted. The element

behavior, obtained by the proposed model that takes into account the steel–concrete interface, is compared

with the classical section behavior, obtained considering only the beam cross-section. It can be pointed out

that:

• the pre-cracking behavior, obtained with the two approaches, are obviously the same in the two analyses

(see the detail in Fig. 10);

• in the post-cracking range the section analysis provides a value of the curvature higher than the one

resulting from the element analysis for the same bending moment; this aspect is due to the stiffness effect

given by the tensile concrete between two cracks;

• significant differences appear from the yielding stage up to failure both in terms of strength and defor-

mation.

In Fig. 11 the bond stress at the steel–concrete interface versus the curvature is represented for the

compressed and tensile reinforcements. Note that for a positive bending moment the reinforcement at the

bottom results in tension while the one at the top in compression. It can be pointed out that for very low

values of the curvature as soon as damage occurs in the tensile part of the section, slip and tangential stress
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appear at the steel–concrete interface at the bottom of the section. For vP 0:00012 mm�1, when the

compressive part of the section starts to damage, bond stresses appear also at the steel–concrete interface at

the compressive edge of the section.
In Figs. 12 and 13 the bending response of the C2 concrete element under cyclic loading is represented.

In particular, the total bending moment, the bending moment in concrete and in the reinforcements are

reported. In Fig. 12 the unloading branch starts after the tensile concrete cracking and before the steel

yielding. At the end of the first loading phase, the tensile part of the section is significantly damaged. Then,

when the external moment becomes negative, during the unloading phase, the initial bending stiffness is

recovered since the model accounts for the crack closure. At the end of the unloading phase the cracked

section is completely damaged in tension. During the reloading phase, for a curvature belonging to the

range �6:8� 10�7 < v < 3:3� 10�7, the whole concrete section is in tension, so only the rebars react to the
external moment (Mc ¼ 0, Mext ¼ Ms).
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In Fig. 13 the unloading branch starts after the steel yielding in tension. In this case, at the beginning of

the unloading path the greater part of the section is already damaged in tension. After the softening branch

of the concrete bending moment Mc, during the unloading phase reported in the detail, the section results
completely damaged in tension. When the average curvature varies from 1.22 · 10�6 to )1.11 · 10�6,

unloading, and from )6.11 · 10�6 to 8.27 · 10�6, reloading, the whole section is in tension. This aspect can

be highlighted in Fig. 14 where the strains at the top eTc and at the bottom eBc of the section versus average

curvature are represented. In these ranges, only the rebars react to the external bending moment since the

concrete is completely damaged in tension. At the end of the unloading phase, plasticity occurs in the

compressed concrete.
                                        

                                        

                                        

                                        

                                        

                                        -0.000012 -0.000006 0.000000 0.000006 0.000012 0.000018

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

χ [mm-1]

 εc
T 

 εc
B 

Fig. 14. Average strain in concrete at the top eTc and at the bottom eBc of the section versus average curvature.



S. Marfia et al. / International Journal of Solids and Structures 41 (2004) 3293–3316 3313
Finally, in Fig. 15 the bond stress versus slip at the steel–concrete interface, evaluated near the cracked

section, for the top and bottom reinforcements during the second examined cyclic loading is represented. It

can be noted that during the reloading a degradation of the stiffness and of the maximum bond stress occur

at the bottom reinforcements.
Also in these analyses the accuracy of the assumed value for the cracking distance 2k has been verified

computing the stress in the concrete at the section z ¼ 0.

4.2. Comparisons with experimental results

The validation of the proposed model has been performed through a comparison with experimental data

available in literature. In particular, the experimental cyclic bending behavior of a cantilever beam, pre-

sented in Kwak and Kim (2001), is simulated.
The following material properties are adopted:

• Concrete:
Ec

eþu

Es

Cs

ae

Ks

Fig. 15. B

reinforcem
¼ 25;310:4 MPa fc ¼ 25 MPa Kc ¼ 3260 MPa eþ0 ¼ 0:00014 e�0 ¼ �0:0012

¼ 0:000286 e�u ¼ �0:0020
• Steel:
¼ 204;662:5 MPa rs ¼ 460:5 MPa Ks ¼ 0:0 MPa ms ¼ 6:5 dsat ¼ 135:0 MPa

tart ¼ 610:0 Cfin ¼ 100:0 astart ¼ 215:0 MPa afinal ¼ 180:0 MPa Cexp ¼ 50000:0

xp ¼ 50000:0
• Steel–concrete interface:
¼ 250 N=mm3 s1 ¼ 10 MPa s2 ¼ 2:5 MPa s1 ¼ 0:1 mm s2 ¼ 2:0 mm s3 ¼ 3:5 mm
The geometrical characteristics are set as:
k ¼ 200 mm b ¼ 228:6 mm h ¼ 406:4 mm y1 ¼ �166:2 mm y2 ¼ 166:2 mm
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Fig. 16. Cyclic bending behavior: comparison between the numerical and experimental results.

3314 S. Marfia et al. / International Journal of Solids and Structures 41 (2004) 3293–3316
Two numerical analyses are performed. In a first case only the linear isotropic hardening, with Ks ¼ 100

MPa, is considered for the steel, while in the second case both the isotropic and kinematic hardening are

accounted for, with the parameters reported above, in order to reproduce the Baushinger effect.

The obtained results, summarized by the relationship between the bending moment and the flexural

curvature, are compared in Fig. 16 with the numerical outcomes reported in Kwak and Kim (2001).
During the first loading cycle both the models appear in good agreement with the experimental results

and are able to simulate in a correct way the strength and stiffness of the specimen. The comparison can be

considered satisfactory also in the first phase of the unloading branch. Nevertheless when the external

moment becomes negative, during the unloading phase, the obtained results highlight the necessity to

account for the Baushinger effect. In fact, when only isotropic hardening is considered for the steel, sig-

nificant different behavior can be found with respect to experimental outcomes, particularly with reference

to the stiffness of the element.

On the contrary, a satisfactory agreement is obtained when both the isotropic and kinematic hardening
are considered. In this case the stiffness degradation is effectively simulated and the numerical results agree

with the experimental ones also for the subsequent loading and unloading cycle.

The effectiveness of the model in reproducing the experimental response points out the necessity of

considering the element behavior, rather than the cross-section behavior, and accounting for the cracking

and slip phenomena. Furthermore, it appears important to consider the Baushinger effect in steel in cyclic

analyses.
5. Conclusions

A one-dimensional model for a beam element of reinforced concrete is proposed. In particular, an

elastoplastic-damage model is developed for the concrete material introducing two damage variables, one in

tension and one in compression, accounting for the crack closure unilateral phenomenon. In particular, the

damage evolution is governed by the elastic strain as the experimental evidences show. A plasticity model

with nonlinear isotropic and kinematic hardening is adopted for the steel of the bars. Furthermore a bond

stress–slip law is introduced for the steel–concrete interface. The model appears simple and effective. In fact,
it is defined by a reduced number of parameters with a clear physical meaning.
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The developed numerical procedure, based on the arc-length method, is able to determine the complex

behavior of reinforced cementitiuous elements. The proper choice of the control parameters allows to

follow the load-displacement equilibrium curve, characterized by softening branches.

The presented one-dimensional model and numerical procedure can be useful to derive fundamental
considerations on the mechanical response of cementitious elements reinforced by classical steel bars. In

fact, the damage and plastic effects, taken into account in the material constitutive law, significantly

influence the beam element behavior. The proposed model highlights the cyclic behavior of reinforced

concrete elements, and, in particular, it provides the stress and strain distributions along the rebars and at

the interfaces, during the loading history. This last aspect could be of paramount importance in structures

in seismic zone, whose mechanical response can be strongly affected by local brittle failure due to bond-slip

behavior or by steel strain localization.

The results obtained by numerical applications clearly show the differences in structural behavior when
considering the whole element rather then the classical single section. Through comparisons with experi-

mental results available in literature, the following conclusions are obtained:

• The influence of the tension-stiffening effects, of the bond-slip behavior and of the steel strain localization

in simple beam elements subjected both to monotonic and cyclic loads cannot be neglected, particularly

in the evaluation of the local ductility.

• Proper simulation of the softening behavior of concrete in compression is necessary for predicting

strength degradation; in particular, the effect of transversal reinforcement in reinforced concrete beams
has to be taken into account, also in the simplified way proposed by Park and Paulay (1975).

• Proper definition of the crack distance is necessary, in order to evaluate the average behavior of the

structural element.

• Uncertainties are still connected to the cyclic bond-slip law, particularly in the unloading branches.

• The Baushinger effect of the reinforcing steel can play a significant influence on the cyclic behavior and

must be reproduced in a suitable way.

Finally, the proposed model can be effectively used to predict structural response under cyclic loading,
and its application can be useful for the evaluation of the safety level of structures subjected to dynamic or

cyclic loads.
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